We have moved! Please visit us at ANTHROECOLOGY.ORG. This website is for archival purposes only.


Mar 21 2012

Tree mapping Technique

There have been many methods for mapping the trees within our 25x25 meter grid that we have identified. The one certatinty we have decided on is the grid must be sectioned into a 5x5 meter grid before we can begin mapping. The picture on the left shows a method found in the field guide Methods For Establishment And Inventory Of Permanent Plots. This method involves usining geometry to determine the exact point of a tree and we thought it could be more accurate and faster than other ideas. However when we went to our forrest to test we discovered that it was not only more tedious but may not improve accuracy by a reasonable amount if at all. The problems arose when we needed to take measurments on unlevel surfaces. It would involve 3 or more people with much instruction and using handfulls of equpment, it was uneffective for our purposes. We plan on going on another test run before the week ends to try another method that will hopefully work for what we need. 

References:

Dallmeier, F. (1992). "Long-term monitoring of biological diversity in tropical forest areas." Methods for establishment and inventory of permanent plots. MAB Digest Series, 11. UNESCO. Paris

Nov 17 2011

The Algorithmic Beauty of Plants


In searching for research related to the structure and architecture of trees and canopies, I came upon the book The Algorithmic Beauty of Plants and the research of Dr. Przemyslaw Prusinkiewicz and his Algorithmic Botany lab in the Department of Computer Science at the University of Calgary.  All I can say is, 'Wow!'

The image at left is from a 2009 paper on procedural, self-organizing reconstructions of tree and forest landscapes.

Dr. Prusinkiewicz's research spans over two decades and his website includes published algorithms for procedurally generating 3D, colored, and textured plants.  Some of the figures in these papers look amazing.

I look forward to looking more into Dr. Prusinkiewicz's research for inspiration and insights in support of my own research with computer vision remote sensing based reconstruction of canopies.  Some of Prusinkiewicz's work covers the use of point clouds to 


represent tree structure, so I am definitly interested in learning more about that data model.

References & image credit:

Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane, Radomir Mech, and Przemyslaw Prusinkiewicz. Self-organizing tree models for image synthesis. ACM Transactions on Graphics 28(3), 58:1-10, 2009.

Oct 25 2011

CAO Dreaming

Breakthrough technology enables 3D mapping of rainforests, tree by tree” - the latest news from the Carnegie Airborne Observatory (CAO)- but also old news: since about 2006, the CAO has been the most powerful 3D forest scanning system ever devised, and Greg Asner has continually improved it.

The CAO was the original inspiration behind Ecosynth.  In 2006/2007, I  was on sabbatical at the Department of Global Ecology at the Carnegie Institute of Washington at Stanford, and my office was right next to Greg’s.   Though he was mostly in Hawaii getting the CAO up and running, he and his team at Stanford completely sold me on the idea that the future of ecologically relevant remote sensing was multispectral 3D scanning (or better- hyperspectral- but one must start somewhere!). 

I coveted the CAO.   I wanted so much to use it to scan my research sites in China.  Our high-resolution ecological mapping efforts there had been so difficult and the 3D approach seemed to offer the chance to overcome so many of the challenges we faced. 

Yet it still seemed impossible to make it happen- gaining permission to fly a surveillance-grade remote sensing system over China?  It would take years and tremendous logistical and political obstacles to overcome.  So I changed my thinking…

What if we could fly over landscapes with a small hobbyist-grade remote controlled aircraft with a tiny LiDAR and a camera?  Alas, no, - LiDAR systems (high grade GPS + IMU) are way too heavy, and will be for a long time.

Then I saw Photosynth, and I thought- maybe that approach to generating 3D scans from multiple photographs might allow us to scan landscapes on demand without major logistical hassles?  The answer is yes, and the result, translated into reality by Jonathan Dandois, is Ecosynth.

Can Ecosynth achieve capabilities similar to CAO?  Our ultimate goal is to find out.   And make it cheap and accessible to all- as the first “personal” remote sensing system of the Anthropocene.

Jul 09 2011

Image-based Tree Modeling

Can the geometry of trees be captured using computer vision and then used to create models of tree structure?  YES!  Super cool work described here at Ping Tan’s website at the National University of Singapore:

http://www.ece.nus.edu.sg/stfpage/eletp/Projects/ImageBasedModeling/

 

Still a long way to go before this will be useful for ecologists- but a huge step in the right direction!

Youtube version here…