
Sustainable intensification in land systems: trade-offs,
scales, and contexts
Allison M Thomson1, Erle C Ellis2, HÉctor Ricardo Grau3,
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ScienceDirect
Sustainable intensification of agricultural production is

expected to be an important pathway for achieving future food

security while protecting the environment. Recognizing that

there is no single answer to how different dimensions of

intensification can be achieved sustainably, we identify

opportunities for research across spatial scales. We focus

specifically on research questions around advances in

technology and management and suggest that progress on

these questions can be made by (i) improving understanding of

trade-offs, especially across scales, (ii) recognition of the

context-specificity of how agricultural intensification can

become more sustainable, and (iii) development, access and

wider use of global datasets for integrative research.
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Introduction
A considerable body of research has focused on

understanding how future agricultural production can

meet the growing demand for agricultural commodities

while at the same time reducing environmental impacts

[1]. Research in support of this aim is based on the

premise that all people require an adequate and nutritious

diet, and that producing food and other land-based

products should not compromise the ability of land to

do so in the future. Likewise, there is consensus that the

growing environmental impacts of agriculture, including

biodiversity loss, reduction of soil quality (by erosion,

chemical use, and nutrient depletion), degradation of

water resources, and climate change, must be reduced

(Figure 1). Many strategies can contribute toward

achieving these goals, including increasing production

on existing cropland, identifying management practices

that reduce environmental degradation and biodiversity

loss, and improving the resilience of production systems

to climate and environmental change [2–4].

Research supporting the dual goals of increasing agricul-

tural production while lowering its environmental impact

are often framed in the context of ‘sustainable

intensification’. This term has been defined in multiple

ways, focused on the trade-offs between agricultural

production and the environment [5], or extended to

include the multiple dimensions of food systems, such

as food security, access and distribution, food demand,

consumption and waste, and socio-economic dimensions

such as livelihoods and justice [6–11]. Here, we address

where making connections between approaches that

focus on different geographic scales is important for

advancing research on sustainable intensification. We

focus only on the production and environmental impact

component of the use of land for primary crop production.

While broader food system aspects, including social and

economic dimensions are also critical, we refer readers to

the previously cited works and Meyfroidt et al. (this issue)

[12] for broader discussion of those topics.

Sustainable intensification does not refer to any single

management practice or system per se [3,13]. Trade-offs

between agriculture and the environment vary in relation

to the diverse modes of intensification, across spatial

scales, and against the realities of local environmental

conditions (e.g. soils, topography and climate). In addition
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Normative dimensions of the requirements from land resources to support people and ecosystems that depend on the sustainability of agricultural

production.
to the trade-offs explored here, socio-economic

characteristics such as market integration, land tenure,

local knowledge, and cultural values will influence how

agricultural systems in a region evolve [6,14]. Likewise,

the specific field management and production practices

that achieve intensification in a sustainable manner

depend on regional and local context [15].

Here we further focus in on identifying potential

directions for transformative research in sustainable

intensification where land system science could make

valuable contributions — concepts and tools that can

contribute to integrating the social and environmental

systems, and strategies for linking research across scales

while considering context-specificity [1,16]. We conclude

by noting common research dimensions and identifying

future research directions for integrative approaches to

advance understanding of sustainable intensification.

From plants to fields: insights from crop
science and agronomic practices
Since the Green Revolution of the mid-20th Century,

crop yields in many regions of the world have increased

steadily with adoption of higher yielding varieties with

expanded use of fertilizers, pesticides and irrigation [17].

More recently, advanced crop breeding and genetic

engineering techniques have helped to accelerate the

development of new crop varieties and allow farmers to

achieve higher yields, reduce pesticide use [18,19], lower

costs, and in some cases to reduce the land and

environmental footprint of agriculture [20,21]. However,

the rate of increase in yields has recently slowed, due to a

combination of factors including farmers’ lack of

resources for intensification, crops approaching maximum

achievable yield under field conditions, or because

incentives for environmental protection place additional

demands on the land [22]. Meanwhile, negative

environmental impacts on biota, air and water continue

to accumulate owing to increases in fertilizer, pesticides,

and irrigation, as well as the emergence of chemical

resistance in crop pests and weeds due to greater reliance

on a smaller number of pesticides [23]. All of these trends

illustrate the urgency of sustainable intensification
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research, to continue increasing production while

recognizing the potential for and developing strategies

to reduce negative environmental impacts.

Research at the plant scale includes several emerging

trends that are relevant when considering future

agricultural systems. For example, research on increasing

photosynthetic efficiency is a potentially transformative

development that would open up new strategies for

sustainable intensification [24,25]. Efforts to improve

nitrogen efficiency [26] have been assisted by the

discovery of native varieties with novel attributes, such

as maize that can fix nitrogen through symbiotic

relationships with the soil microbiota [27]. Such

developments raise the possibility of high-yielding crops

that, if managed appropriately, might require less

fertilizer [18,19]. Similarly, the development of locally

adapted, high-yielding varieties of perennial grain crops

could increase the feasibility of broad-scale agroecological

systems, particularly to restore production on degraded or

marginal agricultural lands [28]. While the potential of

this research has not yet been realized at the scale

required for farmer adoption, understanding the

implications for land systems of such novel and emerging

developments now will reduce the risk of negative

environmental or societal consequences resulting from

more widespread future adoption of these technologies.

Research on sustainable practices for field-scale

management often focuses on specific factors limiting crops

from achieving their biological potential [29]. Other

approaches have looked to natural ecosystems to design

production systems that focus on intensification through

production of multiple crops on the same field, relying on

the complementarity of different plant functional groups

and on ecological functions to maintain soil fertility and

reduce losses to pests or weeds [14]. Research into the

trade-offs between environmental impact and productivity

have found that no one set of practices is ideal for all

circumstances, as not all conservation practices (e.g.

no-tillage, organic systems) maintain or increase crop yield

[23,30,31] or are universally beneficial for the environment

(e.g. no-till agriculture requiring pesticide use). Thus, the
www.sciencedirect.com
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environmental context and trade-offs must determine how

intensificationcan be achievedsustainably. Whileour focus

here has been on recent technological advances, we should

emphasize the crucial contributions of existing manage-

ment and technologies to sustainable intensification.

Indeed, farmers in many parts of the world have adopted

management practices that also contribute to sustainable

intensification by using context-appropriate technologies,

such as smallholder use of terracing and raised-field

horticulture in wetlands in developing country contexts

of lower financial capacity and sufficient and cheaper

labor [32].

The characteristics of crops and how they are managed,

especially in terms of tillage and agrochemical inputs,

largely determine the environmental impact of agriculture

at the local scale. Increasingly, precision agricultural

technologies that help target-specific management

practices within farm fields show promise to increase input

efficiency. As these techniques become more accessible

and affordable, precision agriculture can be applied by a

broader community of farmers. The management of

livestock integrated into crop production systems can also

increase the overall food production of lands in certain

regions and contexts [33�,34]. Understanding trade-offs of

such local management decisions for larger regions is

important — for example, perennial grain crops may reduce

time and energy required for management and enhance

ecosystem services, but if yields remain low will require

more land in use to reach the same production level.

Assessing how such trade-offs manifest at broader spatial

scales requires integrative approaches that connect the

relative positive (e.g. increased yield) versus negative

(e.g. pollution, water depletion, soil erosion) impacts of

different agricultural systems. Understanding the potential

cross-scale benefits and challenges of emerging technolo-

gies and management practices is a research priority to

identify opportunities for sustainable intensification.

From farms to landscapes: insights from
landscape ecology and geography
Research at the landscape scale is the fundamental

connection between the diverse array of relevant

disciplines at the plant to field level and research to inform

national and global decision making. Studies are

increasingly focusing on the degree of heterogeneity in

environmental conditions such as soil quality, water

availability, carbon stocks and the degree of endemic

species, and how these conditions influence management

decisions. For example, conventional agriculture based on

the economy of scale associated with a high degree of

mechanization and agrochemical use is most feasible where

favorable environmental conditions occur homogenously

across larger regions (e.g. in temperate or tropical plains).

Although local biodiversity might be lost across large areas

where industrialized agriculture expands, there will be

fewer edge effects (e.g. pesticide drift, isolation of species’
www.sciencedirect.com 
populations) than the same agricultural area in an

environmentally heterogeneous, fragmented landscape.

Conversely, other forms of intensification, such as

multi-species cropping or agroforestry systems, could

minimize impacts in environmentally heterogeneous

regions [35], or restore environmental heterogeneity where

it has been lost historically (e.g. due to conventional

intensification practices). Thus, environmental heteroge-

neity determines the scope and intensity of trade-offs

associated with land management decisions.

A debate in landscape research is to what extent accepting

strong local trade-offs (e.g. intensifying agriculture

maximally) can lead to lower environmental impact at

broader scales (e.g. because less area is needed for

production) [4,10,33�]. In some contexts, landscape

configuration [37�,38�] can be used to understand how local

trade-offs aggregate at the landscape level. For example,

carbon emissions resulting from forest conversion to

agriculture scale linearly with the amount of forest

converted. Conversely, ecosystem functions such as water

retention, rainfall recycling or biodiversity loss, may

respond in highly non-linear ways, with potential tipping

points at critical levels of deforestation [39]. At the same

time, minor landscapeinterventions (e.g.devoting less than

five percent of a farmed landscape to grass or forest), can

have substantial environmental benefits [40]. In addition,

specific landscape arrangements can maintain and restore

ecosystem services, such as pest control, which often

underpin or contribute to agricultural production [41,42].

Further exploring the common contexts that reduce

trade-offs at the landscape level will contribute to

developing research priorities at both local scales (e.g. what

crop characteristics and management systems to further

study and develop) and larger national to global scales (e.g.

what scenarios and planning are necessary to reduce

trade-offs across diverse landscapes). For example,

land-use planning can be used to identify land system

architectures that lessen trade-offs with the environment

[43,44]. Emerging approaches based on multi-criteria

optimization can identify configurations of land uses that

maximize agricultural production while minimizing

environmental impacts at the landscape scale [45].

Designing agricultural landscapes to maintain connectivity

among natural areas can lower biodiversity impact

substantially [46,47]. While such ‘optimized’ landscapes

can in practice be difficult to achieve, such research can be

insightful as to which landscape configurations are more

advantageous than others, thus leading to concrete policy

and management suggestions. For example, maintaining

crop heterogeneity or restoring landscape elements such as

hedgerows and single trees is effective at reducing negative

impacts on biodiversity at the farm level [48]. Recent

work increasingly suggests that optimal landscapes for

biodiversity consist of a mix of land-use intensities and

differ from pure sparing or sharing landscapes [49,50�,51].
Current Opinion in Environmental Sustainability 2019, 38:37–43
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These insights and methodologies can be valuable to

examine how developments in research at the plant to field

scale might scale up, and to identify potential trade-offs of

emerging management systems and technologies in

advance of widespread adoption.

From national and regional to global scale:
insights from integrative and scenario
research
Research at broader geographic extents encompasses a wide

range of approaches, from data observations and frameworks

to spatial optimization and scenario assessments. Here,

multi-disciplinary approaches contribute to understanding

of global challenges, such as the role of land systems in

achieving sustainable development, climate mitigation, and

protection of biodiversity. Pathways to sustainability are

strongly influenced by national-level decisions that set the

legal framework and influence the level of adoption of global

principles and of international flows of agricultural products.

Thus, this research is often considered under a governance

scale framework, to provide key framing conditions for

consideration of such trade-offs, such as institutions and

planning contexts [52].

Research to integrate across scales can contribute insights

into where crops achieve their highest potential yield and to

where agricultural production can be maximized with

optimization of water and nutrient inputs [53], pest and

disease control. Kehoe et al. [54], for example, identified

regions where potential agricultural expansion and inten-

sification coincide spatially with unique biodiversity, and

therefore locations where decisions about the diverging

trade-offs of these land-use strategies are most important to

consider. Assessing the relative global value of land for

agriculturaluseversusprotected areas, andtheir integration

in multifunctional landscape planning at local, regional and

global scales, is an important consideration for global

conservation planning, including the Half Earth proposal

[55�; Ellis et al. this issue).

Building from such insights, scenario research has been

applied to understand trade-offs at the global scale while

considering specific objectives, such as how to increase

agricultural output to meet world food demand in the

future. Erb et al. [33�] found more feasible scenarios for

achieving future food securitywith zero deforestationwhen

high yields are assumed compared to when lower yields are

assumed, and when comparatively land-inefficient

livestock production systems (e.g. cattle ranching) are

minimized. Mehrabi et al. [56] and Egli et al. [57�] found

that the spatial organization of agricultural lands could

strongly alter the trade-offs between agricultural

production and biodiversity conservation.

Research at the national to global scale is highly

integrative — findings from landscape scale analyses

can lead to broader insights when connections between
Current Opinion in Environmental Sustainability 2019, 38:37–43 
them are made. Looked at regionally, individual

land-use changes can be seen as land-use redistribution,

such as when agriculture is abandoned in mountainous

areas but intensified and expanded in flatland areas

[58]. While the local change may have specific

environmental implications, the broader scale impact

is that by agricultural land use adjustment to the most

productive areas, overall outcomes for the environment

are more sustainable [59]. A key question emerging

from this research is whether globalized trade has the

potential to enhance the extent of natural ecosystems,

lead to lower greenhouse gas emissions and food prices

by optimizing the distribution of land uses [60] or if it

leads to increasing displacement of environmental

impacts toward the most sensitive and vulnerable

regions [61].

One limitation of research at this scale is the necessity of

making generalizations from the complex field to landscape

researchfindingsdiscussedearlier.Novelapproaches to fully

consider how landscape heterogeneity and local trade-offs

scale could lead to new insights on what decisions lead to

sustainable intensification at global scales. Advancing such

global scale studies depends on the availability of consistent

and reliable data sources. Recent improvements in spatially

detailed, globally consistent datasets on land management

practices allow for systematic, cross-scale analyzes of how

trade-offs between intensification  and environmental

impacts vary across both spatial and temporal scales

[62,63]. In cases where data are limited, new research

designing frameworks for extrapolating from known data

across landscapes are beginning to help address gaps by

enabling rapid scaling of local research findings on environ-

mental conditions and agronomic practices [64�]. Such data

resources can be mined for insights and further inform

regional and global economic scenario models that consider

the environmental and societal trade-offs associated with

different potential realizations of future agricultural systems.

Conclusions
Sustainable intensification encompasses specific

disciplinary research in subjects ranging from crop

science to agronomy, ecology, economics, rural studies,

and more. Sustainable intensification thus requires

research integrating across multiple disciplines. Some

common dimensions of sustainable intensification

across multiple disciplines that are helpful in the design

of integrative research approaches include:

i increase input efficiency of energy, nutrients and

water,

ii minimize nutrient and agrochemical loss to the

environment,

iii maintain the long-term productive capacity of the soil

and land,

iv minimize natural habitat conversion and disturbance,
www.sciencedirect.com
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v maximize the environmental value of agricultural

lands,

vi understand spatial patterns of land use that optimize

trade-offs at different scales,

vii accelerate the rate of change toward more sustainable

systems.

Emerging technology and agricultural management

strategies are changing how these seven common

dimensions may need to be considered in future research.

Changing social and environmental context, meanwhile,

increases the urgency for continued research into the

design of agriculture systems that support sufficient food

production for achieving global demand while supporting

local livelihoods [11,12]. Research is needed to under-

stand how to embed sustainable intensification within

socioecological systems that are resilient and adaptive to

cope with rapidly changing climate and socioeconomic

conditions.

In accordance with these considerations, we identify

three integrative priorities to advance sustainable inten-

sification research:

1) How do emerging advances in technologies and practices

at the field scale influence sustainable intensification at

regional to global scales?

2) How do trade-offs between intensification and environ-

mental impacts vary across geographic scales, and how can

that be accounted for both conceptually and from a land

governance perspective?

3) What global datasets of land management, environmental

characteristics, and socio-economics are needed to help

advance scenario research that can inform analysis of

trade-offs across scales?

One avenue that can contribute to addressing these priorities

is a systems perspective that integrates across ecological

characteristics that considers diverse levels of environmental

homogeneity or heterogeneity, and that considers trade-offs

across geographic scales. Land system science approaches can

contribute to understanding the contextual basis and to

linkingtheenvironmental impactsconsiderations to thesocial

and economic considerations. In particular, improving our

understanding of the distant impacts of local to national

actions on ecosystems and communities in other regions

helps bridge the scales between local actions and global

consequences.Byincludingsocial,governance,andeconomic

considerations,  researchers can explore the motivations of

actors who drive land use change, the trade-offs considered

and how those evolve over time.

Looking forward into the future, careful assessment of

environmental impacts of emerging technology and

management across scales is needed to achieve sustainable

intensification. By considering research relevant for

sustainable intensification across scales, land system
www.sciencedirect.com 
science in collaboration with other disciplines can contrib-

ute to identify appropriate combinations of intensification

and sustainability to address global scale food security and

environmental challenges.
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